Magnetotails in the Solar System

Capa
Andreas Keiling, Caitríona Jackman, Peter Delamere
John Wiley & Sons, 2 de fev de 2015 - 407 páginas

All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess well developed magnetotails. However, Mars and Venus have no global intrinsic magnetic field, yet they possess induced magnetotails. Comets have a magnetotail that is formed by the draping of the interplanetary magnetic field. In the case of planetary satellites (moons), the magnetotail refers to the wake region behind the satellite in the flow of either the solar wind or the magnetosphere of its parent planet. The largest magnetotail in our solar system is the heliotail, the “magnetotail” of the heliosphere. The great differences in solar wind conditions, planetary rotation rates, ionospheric conductivity, and physical dimensions provide an outstanding opportunity to extend our understanding of the influence of these factors on magnetotail processes and structure.

Volume highlights include:

  • A discussion of why a magnetotail is a fundamental issue in magnetospheric physics
  • A unique collection of tutorials that cover a large range of magnetotails in our solar system
  • A comparative approach to magnetotail phenomena, including reconnection, current sheet, rotation rate, plasmoids, and flux robes
  • A review of global simulation studies of the effect of ionospheric outflow on the magnetosphere-ionosphere system dynamics

Magnetotails in the Solar System brings together for the first time in one book a collection of tutorials and current developments addressing different types of magnetotails. As a result, this book will appeal to a broad community of space scientists and be of interest to astronomers who are looking at tail-like structures beyond our solar system.

 

O que estão dizendo - Escrever uma resenha

Não encontramos nenhuma resenha nos lugares comuns.

Conteúdo

Tutorials
23
Magnetotails of Mars and Venus
43
Earths Magnetotail
61
Jupiters Magnetotail
85
Saturns Magnetotail
99
Magnetotails of Uranus and Neptune
119
Satellite Magnetotails
135
Moons Plasma Wake
149
Solar Wind Interaction with Giant Magnetospheres and Earths Magnetosphere
217
Solar Wind Entry Into and Transport Within Planetary Magnetotails
235
Similarities and Differences
259
Current Sheets Formation in Planetary Magnetotail
289
Plasma and Magnetic Flux Transport from Magnetic Tail into Magnetosphere
307
Energetic Particle
327
Radiation Belt Electron Acceleration and Role of Magnetotail
345
Substorm Current Wedge at Earth and Mercury
361

Physics of Cometary Magnetospheres
169
Heliotail
189
Specialized Topics
199

Outras edições - Visualizar todos

Termos e frases comuns

Sobre o autor (2015)

Andreas Keiling is an Associate Research Physcists with the Space Sciences Laboratory at the University of California-Berkeley. Dr. Keiling has held various visiting professorships. He has also served as lead convener for sessions at the American Geophysical Union, European Geophysical Union, and Chapman conferences.

Catriona Jackson currently holds a Leverhulme Trust Early Career Fellowship and a Royal Astronomical Society Fellowship in the Department of Physics and Astronomy at University College London.

Peter A. Delamere is an Associate Professor at the Geophysical Institute at the University of Alaska-Fairbanks.

Informações bibliográficas