Finite Volume Methods for Hyperbolic ProblemsCambridge University Press, 26 de ago. de 2002 - 558 páginas This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, (including both linear problems and nonlinear conservation laws). These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are applied to eliminate numerical oscillations. The methods were orginally designed to capture shock waves accurately, but are also useful tools for studying linear wave-progagation problems, particulary in heterogenous material. The methods studied are in the CLAWPACK software package. Source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods. |
Conteúdo
II | 1 |
IV | 3 |
V | 5 |
VI | 6 |
VII | 7 |
VIII | 8 |
IX | 9 |
X | 10 |
CXLII | 234 |
CXLIII | 235 |
CXLV | 237 |
CXLVI | 239 |
CXLVII | 243 |
CXLVIII | 244 |
CXLIX | 252 |
CL | 253 |
XI | 13 |
XII | 15 |
XIII | 17 |
XIV | 20 |
XV | 21 |
XVI | 22 |
XVIII | 23 |
XIX | 26 |
XX | 29 |
XXI | 31 |
XXII | 33 |
XXIII | 34 |
XXIV | 35 |
XXV | 41 |
XXVI | 43 |
XXVII | 46 |
XXVIII | 47 |
XXX | 48 |
XXXI | 49 |
XXXIV | 50 |
XXXV | 52 |
XXXVII | 55 |
XXXVIII | 57 |
XXXIX | 59 |
XL | 62 |
XLI | 64 |
XLIII | 66 |
XLIV | 67 |
XLV | 68 |
XLVI | 71 |
XLVIII | 72 |
L | 73 |
LI | 76 |
LII | 78 |
LIV | 83 |
LV | 84 |
LVI | 85 |
LVII | 87 |
LIX | 89 |
LXI | 91 |
LXII | 98 |
LXIV | 99 |
LXVI | 100 |
LXVIII | 102 |
LXIX | 103 |
LXX | 106 |
LXXI | 107 |
LXXII | 108 |
LXXIII | 109 |
LXXIV | 110 |
LXXV | 111 |
LXXVI | 112 |
LXXVII | 114 |
LXXVIII | 115 |
LXXIX | 118 |
LXXX | 120 |
LXXXI | 121 |
LXXXII | 122 |
LXXXIII | 123 |
LXXXIV | 127 |
LXXXV | 129 |
LXXXVI | 130 |
LXXXVIII | 133 |
LXXXIX | 138 |
XC | 139 |
XCI | 141 |
XCII | 143 |
XCIII | 149 |
XCIV | 150 |
XCV | 151 |
XCVI | 155 |
XCVII | 156 |
XCVIII | 158 |
XCIX | 159 |
C | 161 |
CI | 162 |
CII | 164 |
CIII | 169 |
CIV | 171 |
CV | 172 |
CVI | 173 |
CVII | 177 |
CVIII | 178 |
CIX | 179 |
CX | 181 |
CXII | 183 |
CXIII | 187 |
CXIV | 188 |
CXV | 190 |
CXVI | 191 |
CXVIII | 198 |
CXIX | 200 |
CXX | 201 |
CXXI | 203 |
CXXII | 206 |
CXXIII | 208 |
CXXIV | 209 |
CXXV | 210 |
CXXVII | 211 |
CXXVIII | 212 |
CXXIX | 213 |
CXXX | 214 |
CXXXI | 215 |
CXXXII | 216 |
CXXXIV | 219 |
CXXXV | 222 |
CXXXVI | 224 |
CXXXVII | 227 |
CXXXVIII | 229 |
CXXXIX | 230 |
CXL | 232 |
CLI | 254 |
CLII | 259 |
CLIII | 260 |
CLIV | 262 |
CLV | 263 |
CLVII | 264 |
CLVIII | 269 |
CLIX | 279 |
CLX | 281 |
CLXI | 282 |
CLXII | 283 |
CLXIII | 287 |
CLXIV | 291 |
CLXV | 292 |
CLXVI | 293 |
CLXVIII | 295 |
CLXIX | 298 |
CLXXI | 300 |
CLXXII | 301 |
CLXXIII | 302 |
CLXXV | 305 |
CLXXVI | 306 |
CLXXVII | 308 |
CLXXVIII | 309 |
CLXXIX | 311 |
CLXXX | 313 |
CLXXXI | 314 |
CLXXXII | 329 |
CLXXXIII | 333 |
CLXXXV | 335 |
CLXXXVI | 338 |
CLXXXVII | 340 |
CLXXXVIII | 348 |
CLXXXIX | 350 |
CXC | 358 |
CXCI | 362 |
CXCII | 368 |
CXCIII | 371 |
CXCIV | 372 |
CXCV | 374 |
CXCVI | 375 |
CXCVII | 377 |
CXCVIII | 378 |
CXCIX | 384 |
CC | 387 |
CCI | 388 |
CCII | 389 |
CCIII | 390 |
CCIV | 391 |
CCV | 393 |
CCVI | 396 |
CCVIII | 397 |
CCIX | 398 |
CCX | 399 |
CCXI | 401 |
CCXII | 404 |
CCXIII | 410 |
CCXIV | 415 |
CCXV | 416 |
CCXVI | 419 |
CCXVII | 421 |
CCXVIII | 423 |
CCXIX | 424 |
CCXX | 425 |
CCXXII | 428 |
CCXXIII | 429 |
CCXXIV | 431 |
CCXXV | 433 |
434 | |
CCXXVII | 436 |
CCXXVIII | 438 |
CCXXIX | 439 |
CCXXX | 443 |
CCXXXI | 444 |
CCXXXII | 446 |
CCXXXIII | 447 |
CCXXXIV | 449 |
CCXXXV | 450 |
CCXXXVI | 452 |
CCXXXVII | 453 |
CCXXXVIII | 456 |
CCXL | 457 |
CCXLI | 460 |
CCXLII | 464 |
CCXLIII | 467 |
CCXLIV | 469 |
CCXLVII | 471 |
CCXLVIII | 473 |
CCXLIX | 474 |
CCL | 476 |
CCLI | 480 |
CCLIII | 485 |
CCLIV | 491 |
CCLV | 492 |
CCLVI | 499 |
CCLVII | 502 |
CCLIX | 504 |
CCLX | 509 |
CCLXII | 514 |
CCLXIII | 515 |
CCLXIV | 517 |
CCLXV | 518 |
CCLXVI | 519 |
CCLXVII | 520 |
CCLXVIII | 525 |
CCLXIX | 530 |
CCLXX | 531 |
CCLXXI | 534 |
535 | |
553 | |
Outras edições - Ver todos
Termos e frases comuns
accuracy accurate acoustics advection equation applied approach approximate arise assume average boundary conditions called cell Chapter characteristic compute conservation law consider consists constant convergence correct corresponding curve define density depends derived described determine developed dimension direction discontinuity discussed edge eigenvalues eigenvectors entropy error example fact Figure flow fluctuations fluid flux formula function given gives Godunov's grid grid cell hence high-resolution hyperbolic initial data integral interface introduced jump leads limiter linear linear system matrix method moving nonlinear normal Note numerical obtain one-dimensional particular physical plane pressure propagating rarefaction wave region Riemann problem Riemann solution Riemann solver satisfied scalar second-order Section shock shown shows similar simply smooth solution solving source term space speed splitting step structure typically upwind variables variation varies vector velocity wave