Riemannian Geometry

Capa
Springer Science & Business Media, 30 de jul. de 2004 - 322 páginas
Many years have passed since the ?rst edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic - velopments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However,R- mannian Geometry is not only a fascinating ?eld in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincar ́ e conjecture. In another direction, Geometric Group Theory, a very active ?eld nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. Butletusstophoggingthelimelight.Thisisjustatextbook.Wehopethatour point of view of working intrinsically with manifolds as early as possible, and testingeverynewnotiononaseriesofrecurrentexamples(seetheintroduction to the ?rst edition for a detailed description), can be useful both to beginners and to mathematicians from other ?elds, wanting to acquire some feeling for the subject.
 

Conteúdo

I
xv
II
4
III
8
IV
10
VI
12
VII
14
VIII
15
IX
17
LXXIV
144
LXXV
146
LXXVII
147
LXXVIII
149
LXXIX
150
LXXX
152
LXXXII
153
LXXXIII
157

X
20
XI
22
XII
24
XIV
26
XV
27
XVII
29
XVIII
30
XIX
33
XX
34
XXI
35
XXII
36
XXIII
37
XXIV
38
XXV
39
XXVI
40
XXVII
43
XXVIII
44
XXIX
45
XXXI
49
XXXII
52
XXXIV
56
XXXV
57
XXXVI
61
XXXVII
63
XXXVIII
68
XXXIX
70
XL
71
XLI
73
XLII
76
XLIII
77
XLIV
78
XLVII
83
XLVIII
87
XLIX
92
L
94
LI
98
LII
101
LIII
107
LIV
113
LVI
114
LVII
115
LVIII
118
LIX
119
LX
124
LXI
126
LXII
127
LXIII
129
LXIV
131
LXV
133
LXVI
134
LXVII
135
LXVIII
136
LXIX
137
LXX
139
LXXII
140
LXXIII
143
LXXXIV
158
LXXXV
160
LXXXVI
161
LXXXVII
162
LXXXIX
163
XC
165
XCI
166
XCII
167
XCIII
171
XCIV
172
XCV
174
XCVII
175
XCVIII
176
XCIX
177
C
178
CII
181
CIII
182
CIV
183
CVI
188
CVII
191
CVIII
192
CIX
196
CX
198
CXI
199
CXIII
202
CXIV
205
CXVII
207
CXVIII
210
CXIX
211
CXX
212
CXXI
214
CXXII
215
CXXIII
216
CXXIV
218
CXXV
219
CXXVI
221
CXXVIII
223
CXXIX
225
CXXXII
226
CXXXIII
229
CXXXIV
233
CXXXV
236
CXXXVI
238
CXXXVII
239
CXXXVIII
243
CXL
246
CXLI
248
CXLII
251
CXLIII
255
CXLV
259
CXLVI
261
CXLVII
263
CXLVIII
303
CXLIX
313
CL
319
Direitos autorais

Outras edições - Ver todos

Termos e frases comuns

Passagens mais conhecidas

Página 313 - H. WENTE, Counterexample to a conjecture of H. Hopf, Pacific J. of Math. 121 (1986), 193-243 [Wl] H.

Informações bibliográficas